Backward doubly stochastic differential equations with polynomial growth coefficients

نویسندگان

  • Qi Zhang
  • Huaizhong Zhao
  • Shanjian Tang
چکیده

In this paper we study the solvability of backward doubly stochastic differential equations (BDSDEs for short) with polynomial growth coefficients and their connections with SPDEs. The corresponding SPDE is in a very general form, which may depend on the derivative of the solution. We use Wiener-Sobolev compactness arguments to derive a strongly convergent subsequence of approximating SPDEs. For this, we prove some new estimates to the solution and its Malliavin derivative of the corresponding approximating BDSDEs. These estimates lead to the verifications of the conditions in the Wiener-Sobolev compactness theorem and the solvability of the BDSDEs and the SPDEs with polynomial growth coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward Doubly Stochastic Differential Equations With Monotone and Discontinuous Coefficients

In this paper, we use the Yoshida approximation to prove the existence and uniqueness of a solution for the backward doubly stochastic differential equation when the generator is monotone and continuous. Before that we present the results for existence and uniqueness of an adapted solution of the backward doubly stochastic differential equation under some generals conditions.

متن کامل

Backward Doubly Stochastic Differential Equations Driven by Levy Process : The Case of Non-Liphschitz Coefficients

In this work we deal with a Backward doubly stochastic differential equation (BDSDE) associated to a random Poisson measure. We establish existence and uniqueness of the solution in the case of non-Lipschitz coefficients.

متن کامل

Stationary Solutions of SPDEs and Infinite Horizon BDSDEs with Non-Lipschitz Coefficients

We prove a general theorem that the L2ρ(R ;R) ⊗ L2ρ(R ;R) valued solution of an infinite horizon backward doubly stochastic differential equation, if exists, gives the stationary solution of the corresponding stochastic partial differential equation. We prove the existence and uniqueness of the L2ρ(R ;R)⊗Lρ(R ;R) valued solutions for backward doubly stochastic differential equations on finite a...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Maximum Principle and the Applications of Mean-Field Backward Doubly Stochastic System

Since Pardoux and Peng firstly studied the following nonlinear backward stochastic differential equations in 1990. The theory of BSDE has been widely studied and applied, especially in the stochastic control, stochastic differential games, financial mathematics and partial differential equations. In 1994, Pardoux and Peng came up with backward doubly stochastic differential equations to give th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017